Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(11): e48883, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38024043

RESUMO

The aim of the study was to evaluate the effect of airborne particle abrasion (using different sizes of alumina particles) on the shear bond strength (SBS) between cast and milled titanium metal frameworks and auto-polymerizing acrylic repair resin. Forty flat cylindrical titanium disks were divided into two main divisions: cast and milled titanium. The two divisions were further subdivided into four groups based on metal surface treatment. Three particle sizes of aluminum oxide air abrasive powders (50µm, 110µm, and 250µm) were used for metal surface treatment by airborne particle abrasion. One group was the control group with no surface treatment. Auto-polymerizing acrylic repair resin was applied to all titanium disks. The specimens were subjected to SBS testing using a universal testing machine (Instron Corporation, Norwood, Massachusetts, United States). Surface evaluation was performed using a scanning electron microscope. One-way ANOVA was used for statistical analysis. The results showed a significant increase in SBS after airborne particle abrasion of both milled and cast titanium groups (p<0.001). The SBS was directly proportional to the size of the aluminum oxide particles. The milled titanium group showed higher SBS values than the cast group when the surface was not treated with alumina particles (p < 0.001) and when the surface was treated with the smaller particle sizes of 50 µm, whereas the cast group demonstrated higher SBS values than the milled group (p < 0.01) when the particle size was increased to 110 µm and 250 µm. It could be concluded that SBS between titanium metal frameworks and auto-polymerizing repair acrylic resin was directly related to the size of the alumina airborne particle abrasives. The fabrication method of the titanium framework also influenced the SBS as the untreated milled frameworks demonstrated favorable SBS values compared to the untreated cast frameworks.

2.
J Oral Implantol ; 47(5): 370-379, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263748

RESUMO

This study compared titanium (Ti), palladium (Pd), platinum (Pt), and gold (Au) ion release following induced accelerated tribocorrosion from three Au alloy abutment groups coupled with Ti implants over time; investigated contacting surface structural changes; and explored the effect of Au plating. Three abutment groups, G (n = 8, GoldAdapt, Nobel Biocare), N (n = 8, cast UCLA, Biomet3i), and P (n = 8, cast UCLA, Biomet3i, Au plated), coupled with implants (Nobel Biocare), immersed in 1% lactic acid, were cyclically loaded. Ions released (ppb) at T1, T2, and T3, simulating 3, 5, and 12 months of function, respectively, were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and compared. Surface degradation and fretted particle composition after T3 were evaluated with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDX). ICP-MS data were nonparametric, expressed as medians and interquartile ranges. SEM/EDX showed pitting, crevice corrosion, and fretted particles on the components. Released ion concentrations in all groups across time significantly decreased for Pd (P < .001, median range: 1.70-0.09), Pt (P = .021, 0.55-0.00), and Au (P < .001, 1.01-0.00) and increased for Ti (P = .018, 2.49-5.84). Total Ti release was greater than other ions combined for G (P = .012, 9.86-2.30) and N (P < .001, 13.59-5.70) but not for P (P = .141, 8.21-3.53). Total Ti release did not differ between groups (P = .36) but was less variable across group P. On average, total ion release was 13.77 ppb (interquartile range 8.91-26.03 ppb) across the 12-month simulation. Tribocorrosion of Ti implants coupled with Au abutments in a simulated environment was evidenced by fretted particles, pitting, and crevice corrosion of the coupling surfaces and release of ions. More Ti was released compared with Pd, Pt, and Au and continued to increase with time. Abutment composition influenced ion release. Au-plated abutments appeared to subdue variation in and minimize high-concentration spikes of titanium.


Assuntos
Ligas Dentárias , Implantes Dentários , Corrosão , Ouro , Teste de Materiais , Propriedades de Superfície , Titânio
3.
J Dent ; 66: 91-101, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28800964

RESUMO

OBJECTIVES: The etiology of the reduced marginal bone loss observed around platform-switched implant-abutment connections is not clear but could be related to the release of variable amounts of corrosion products. The present study evaluated the effect of different concentrations of metal ions released from different implant abutment couples on osteoblastic cell viability, apoptosis and expression of genes related to bone resorption. METHODS: Osteoblastic cells were exposed to five conditions of culture media prepared containing metal ions (titanium, aluminum, vanadium, cobalt, chromium and molybdenum) in different concentrations representing the amounts released from platform-matched and platform-switched implant-abutment couples as a result of an earlier accelerated corrosion experiment. Cell viability was evaluated over 21days using the Alamar Blue assay. Induction of apoptosis was measured after 24h of exposure using flow cytometry. Expression of interleukin-6, interleukin-8, cyclooxygenase-2, caspase-8, osteoprotegerin and receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblastic cells were analysed after exposure for 1, 3 and 21days using real-time quantitative polymerase chain reaction assay RESULTS: Metal ions in concentrations representing the platform-matched groups led to a reduction in cell viability (P<0.01) up to 7days of exposure. Stimulated cells showed higher rates of early apoptosis (P<0.01) compared to non-treated cells. Metal ions up-regulated the expression of interleukin-6, interleukin-8, cyclooxygenase-2 and RANKL in a dose dependent manner after 1day of exposure (P<0.05). The up-regulation was more pronounced in the groups containing the corrosion products of platform-matched implant-abutment couples. CONCLUSION: Osteoblastic cell viability, apoptosis, and regulation of bone resorbing mediators were significantly altered in the presence of metal ions. The change in cytokine levels expressed was directly proportional to the metal ion concentration. CLINICAL SIGNIFICANCE: The observed biological responses to decreased amounts of metal ions released from platform-switched implant-abutment couples compared to platform-matched couples may partly explain the positive radiographic findings in respect to crestal bone level when utilising the "platform-switching" concept, which highlights the possible role of corrosion products in the mediation of crestal bone loss around dental implants.


Assuntos
Perda do Osso Alveolar/etiologia , Dente Suporte , Ligas Dentárias/efeitos adversos , Implantes Dentários , Íons/efeitos adversos , Metais/efeitos adversos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Alumínio/efeitos adversos , Alumínio/química , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Cromo/efeitos adversos , Cromo/química , Cobalto/efeitos adversos , Cobalto/química , Corrosão , Ciclo-Oxigenase 2/metabolismo , Ligas Dentárias/química , Projeto do Implante Dentário-Pivô , Implantação Dentária Endóssea , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Molibdênio/efeitos adversos , Molibdênio/química , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Fatores de Tempo , Titânio/efeitos adversos , Titânio/química , Vanádio/efeitos adversos , Vanádio/química
4.
Int J Oral Sci ; 8(2): 117-25, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357323

RESUMO

The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant-abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt-chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant-abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant-abutment couples.


Assuntos
Ligas Dentárias , Projeto do Implante Dentário-Pivô , Ligas de Cromo , Corrosão , Teste de Materiais , Propriedades de Superfície , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...